Эту формулу также называют формулой полной вероятности.
Данную формулу можно применить для решения следующей задачи.
Для контроля продукции лыжной фабрики из трех партий лыж взята на проверку одна деталь. Какова вероятность выявления бракованной продукции, если в одной партии 2/3 лыж бракованные, а в двух других все доброкачественные?
Решение. Пусть событие В – взятая деталь бракованная, Ак – деталь берется из к-ой партии, тогда вероятность Р(Ак)=1/3, где к =1; 2; 3.
Пусть в первой партии находятся бракованные лыжи, значит , тогда в двух других партиях нет бракованных лыж, то есть: .
Применяя формулу полной вероятности получим:
.
Для введения формулы Бейеса составим задачу. Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2, …, Вn, которые образуют полную группу. Так, как нам заранее не известно, какое событие наступит, их называют гипотезами. Допустим, что произведено испытание в результате, которого появилось событие А. Поставим своей задачей определить, как изменились вероятности гипотез, в связи с тем, что событие А уже наступило. Другими словами определим следующие условные вероятности: , , …, .
Определить данные вероятности можно при помощи формулы Бейеса:
.
Заменив , получим: .
Прибор состоит из двух узлов; работа каждого узла необходима для работы прибора в целом. Надежность (вероятность безотказной работы) в течении времени t первого узла равна p1, второго р2. Прибор испытывался в течении времени t, в результате чего обнаружено, что он отказал. Найдите вероятность того, что отказал первый узел, а второй исправен.
Решение. Пусть событие В – прибор отказал, событие А1 – оба узла исправны, А2 – первый узел отказал, а второй испарвен, А3 – первый узел исправен, а второй узел отказал, А4 – оба узла отказали. Эти события образуют полную группу событий. Найдем их вероятности: Р(А1)=р1 р2; Р(А2)=(1-р1)р2; Р(А3)=р1(1-р2);Р(А4)=(1-р1)(1-р2). Так как наблюдалось событие В, то , . Применяя формулу Бейеса получим:
.
Изучение случайных величин требует связи этих величин с определенными событиями, которые заключаются в попадании случайной величины в некоторый интервал и для которых определены вероятности. Другими словами необходимо связать случайную величину с полем данного испытания.
Для лучшего понимания, учителю следует привести пример.
При бросании кости могли появиться цифры 1, 2, 3, 4, 5, 6. Наперед определить число выпавших очков невозможно, так как это зависит от многих случайных величин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная; и числа 1, 2, 3, 4, 5, 6 – есть возможные значения этой величины.
Информация по теме:
Исторический аспект теоретического мышления
В истории философии еще с древности наметилось различие двух типов мышления. С одной стороны, выделялась мыслительная деятельность, направленная на расчленение и описание результатов чувственного опыта, с другой - на раскрытие сущности объектов, внутренних законов их развития. Особенно четко это ра ...
Психологические и поведенческие явления поддающиеся эффективной
саморегуляции
Психологические основы саморегуляции включают в себя управление познавательными процессами: восприятием, вниманием, воображением, мышлением, памятью, речью, а также личностью: поведением, эмоциями и действиями-реакциями на возникшую ситуацию. Саморегуляция каждого из перечисленных психических проце ...
Информационные технологии во внеучебной деятельности младших школьников
Информационные и коммуникационные технологии могут быть с успехом применены для повышения эффективности внеучебной и внеклассной деятельности младших школьников, в организации досуга учеников. Внеучебная работа в любой школе является существенным элементом образа жизни младших школьников, профессио ...