Методика преподавания теории вероятностей и математической статистики в средней школе

Страница 8

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Будем обозначать случайные величины прописными (заглавными) буквами: X, Y, Z, а их возможные значения соответствующими строчными буквами x, y, z. Если величина Х имеет три значения то они будут обозначены так: х1, х2, х3 .

Обычно рассматриваются два типа случайных величин: дискретные и непрерывные. Рассмотрим следующий пример.

Число мальчиков пошедших в секцию бальных танцев среди 100 пришедших туда людей есть случайная величина, которая может принимать следующие значения 0, 1, 2, …, 100. Эти значения отделены друг от друга промежутками, в которых нет возможных значений Х.

Таким образом, в этом примере случайная величина принимает отдельные изолированные значения. Приведем второй пример.

Расстояние, которое пролетит диск при метании, есть величина случайная. Действительно величина зависит от многих факторов, например от ветра, температуры и других факторов, которые не могут быть полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а; b).

В данном примере случайная величина может принять любое из значений промежутка (а; b). Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о том, что целесообразно будет различать случайные величины, принимающие лишь отдельные изолированные значения, и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток. Далее следует дать четкое определение дискретной и непрерывной случайной величины.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Примерами непрерывных случайных величин могут быть спортивный результат в беге или прыжках, рост и масса тела человека, сила мышц и другие.

Для задания дискретной случайной величины не достаточно перечислить все возможные ее значения, нужно еще указать их вероятности.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, в виде формулы и графически.

При табличном задании первая строка содержит возможные значения, а вторая – их вероятности:

Х

х1

х2

хn

p

p1

p2

p2

Сумма вероятностей второй строки таблицы равна единице: .Если множество возможных значений Х бесконечно, то ряд сходится и его сумма равна единице.

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Информация по теме:

Активизация учебной деятельности и проблемная ситуация. Понятие активизации учебной деятельности
Каждый школьник обладает только одному ему присущими особенностями познавательной деятельности, характера, поведения, эмоций, что требует дифференциации в обучении. Учитель должен знать, что такое познавательная активность, каковы особенности и условия ее развития у школьников, какими приемами след ...

Вопросы и их роль в активизации деятельности студентов
Вопросы педагога являются одним из самых распространенных приемов активизация познавательной деятельности обучающихся. Преподаватели широко используют вопросы направленные на проверку усвоения материала, выяснение запаса знаний студентов. Такие вопросы требуют воспроизведения усвоенного материала и ...

Нарушение поведения как психолого-педагогическая проблема
Отклоняющееся поведение- это поведение, которое не согласуется с нормами, не соответствует ожиданиям группы или всего общества. Однако ожидания со временем меняются. В СССР в 60—70-е годы школьные учителя боролись с "длинноволосыми" учениками, усматривая в этом подражание "буржуазном ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru