Например, выполнение штрафного броска в баскетболе есть испытание, а попадание в кольцо – исход. Другой пример исхода – это выпадение определенного числа очков при бросании игральной кости. В отличии от других событий исходы еще называют элементарными событиями, желая подчеркнуть, что эти события состоят только из одного исхода и не делимы на более мелкие.
Далее следует сказать, что в теории вероятностей события обозначаются прописными (заглавными) латинскими буквами: A, B, C, D…
После введения трех важных понятий: случайный эксперимент, случайное событие, исход, модно переходить к определению вероятности.
Первым должно быть рассмотрено статистическое понятие вероятности.
Рассмотрим некоторое количество испытаний, в результате которых появилось событие А. Пусть было произведено N испытаний, в результате которых событие А появилось ровно n раз. Тогда отношение
называют относительной частотой (частость).
При большом количестве повторений испытания частость событий мало изменяется и стабилизируется около определенного значения, а при небольшом количестве повторений она может принимать различные значения. Поэтому интуитивно ясно, что при большом количестве повторений испытания частость события будет стремиться к определенному числовому значению. Такое значение принято называть вероятностью события А и обозначают Р(А).
Таким образом, вероятностью случайного события А называется число Р(А), к которому приближается относительная частота этого события при большом повторении числа экспериментов.
В математике неограниченное число повторений принято записывать в виде предела при N стремящегося к бесконечности:
.
Данное определение называют статистическим определением вероятности. Далее следует объяснить, что найти вероятность с помощью этого определения нельзя, так как нет гарантий, что относительная частота будет к чему-то приближаться; также нельзя сказать, насколько много повторений эксперимента нужно сделать, чтобы полученная частота достаточно хорошо приближала вероятность.
Исходя из этого определения, учащиеся могут установить, что вероятность заключена в интервале:
. Так как n всегда больше либо равно N.
Следует предложить задания на проведение серии экспериментов с целью оценить вероятности возможных исходов эксперимента. При этом можно использовать групповую форму работы и в конце объединить результаты всех групп для получения выводов об относительной частоте событий. Примером такого задания может служить подбрасывание монеты. Это является простым и наглядным испытанием. Практика человека говорит о том, что при большом числе бросаний примерно в 50% испытаний выпадет «орёл», а в 50% – «решка».
После этого следует перейти к изучению классической вероятности. Введение другого определения можно обосновать тем, что не в каждом случае можно провести длинную серию экспериментов. В некоторых случаях вероятности событий могут быть легко определены исходя из условий испытаний. Здесь необходимо вспомнить понятия элементарного исхода.
Пусть испытание имеет n возможных исходов, то есть событий, которые могут появиться в результате данного испытания. При каждом повторении возможно появление только одного из данных исходов (то есть все n исходов несовместны). Кроме того, по условиям испытания нельзя сказать какие исходы появляются чаще других, то есть все исходы являются равновозможными. Допустим теперь что при n равновозможных исходах интерес представляет событие А, которое появляется только при m исходах и не появляется при остальных исходах. Принято говорить, что в данном испытании имеется n случаев, из которых m благоприятствуют появлению события А.
Информация по теме:
Краткие характеристики основных природных элементов участка и требований к
подбору растений
В «Программе воспитания и обучения в детском саду» большое значение придается физическому развитию детей с целью укрепления их здоровья. Дети пребывают на свежем воздухе два раза в день, утром и вечером, а в теплое время года – все время. Прогулки в основном проводятся на участке детского сада. И о ...
Особенности развития памяти у младших школьников
С поступлением ребенка в школу в его жизни происходят существенные изменения, коренным образом меняется социальная ситуация развития формируется учебная деятельность, которая является для него ведущей. Именно на основе учебной деятельности развиваются основные психологические новообразования младше ...
Раздельное и совместное обучение. Плюсы и минусы
Два главных вопроса для родителей, думающих, а куда отдать сына или дочку? 1. Не обделим ли мы наших детей или позволим слишком много социализации, не создадим ли в будущем им проблем в общении с противоположным полом, если в настоящем примем решение отдать их в школу раздельного или совместного об ...