Описание организационной формы передачи учителям методики работы с творческими работами

Педагогика » Творческая тетрадь как средство обеспечения выполнения творческих работ по математике для учащихся 6 классов » Описание организационной формы передачи учителям методики работы с творческими работами

Страница 6

х х х х х

рис. 2.3

Теперь проведем рассуждения для . Рассмотрим множество из пяти элементов . Найдем число сочетаний из пяти элементов по два, рассуждая следующим образом: во множестве пять элементов, каждый из которых может быть взят в паре с другими, четырьмя способами (рис. 2.3), но среди получившихся сочетаний встречаются повторяющиеся, каждая пара повторяется еще раз, поэтому получаем формулу: . Подобные рассуждения проводятся и для сочетаний с другим количеством элементов.

Рассмотрим общий случай, т.е. множество из элементов. Найдем число сочетаний из элементов по два: во множестве элементов, каждый из которых может быть взят в паре с другим способом (рис. 2.4), но среди них есть повторяющиеся, каждая пара повторяется еще раз, поэтому получаем формулу:

.

Проводя рассуждения при выводе общей формулы для числа сочетаний , где k большое число, легко запутаться. Поэтому предлагаем проводить рассуждения для k = 3, 4, 5, 6,7.

Проводя подобные рассуждения для других случаев будем получать следующие формулы:

;

; … … … …; =

==.

Формулы для , , ,– очевидны.

Таким образом, формулы биномиальных коэффициентов найдены. Получаем следующее разложение для формулы :

.

Данное разложение называется формулой бинома Ньютона.

Формулу называют формулой бинома Ньютона, но это название с точки зрения истории неверно. Формулу для хорошо знали среднеазиатские математики Омар Хайям, Гиясэддин и др. Заслуга же Ньютона в том, что ему удалось обобщить формулу на случай нецелых показателей [4].

Таким образом, мы вывели разложение формулы бинома Ньютона, которая является обобщением формул и ; два способа нахождения биномиальных коэффициентов: через треугольник Паскаля и формулу числа сочетаний .

Страницы: 1 2 3 4 5 6 7 8 9

Информация по теме:

Проблема развития памяти в научной литературе
Исследования памяти имеют междисциплинарный характер, так как в различных формах она встречается на всех уровнях жизни и включает не только процессы сохранения индивидуального опыта, но и механизмы передачи наследственной информации. Работы немецкого психолога Г. Эбингауза в конце прошлого века пол ...

Процес обучения
Под знаниями в обучении понимают основные закономерности предметной области, позволяющие человеку решать конкретные производственные, научные и другие задачи, т.е. факты, понятия, суждения, образы, взаимосвязи, оценки, правила, алгоритмы, эвристики, а также стратегии принятия решений в этой области ...

Сущность воображения как психического процесса
Процесс воображения свойственен только человеку и является необходимым условием его трудовой деятельности. Воображение – это психический процесс создания нового в форме образа, представления или идеи. Человек может мысленно представить себе то, что в прошлом не воспринимал или не совершал, у него м ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru