Описание организационной формы передачи учителям методики работы с творческими работами

Педагогика » Творческая тетрадь как средство обеспечения выполнения творческих работ по математике для учащихся 6 классов » Описание организационной формы передачи учителям методики работы с творческими работами

Страница 7

Бином Ньютона можно обобщить по количеству слагаемых, т.е. найти разложение для , однако вывод данной формул является довольно сложным для школьника. Поэтому рассмотрим частный случай формулы, формулу для суммы трех переменных, т.е. для тринома. Выведем разложение для тринома , а также арифметическую таблицу триномиальных коэффициентов.

Рассмотрим ряд формул, являющихся частными случаями для , которые можно получить раскрыв скобки и приведя подобные слагаемые:

рис. 2.5

Построим арифметическую таблицу из триномиальных коэффициентов, данная таблица будет представлять собой пирамиду, которую называют пирамидой Паскаля (рис. 2.5). Видим, что по трем внешним ребрам пирамиды стоят единицы. Каждая из трех боковых граней представляет собой треугольник Паскаля. В n-ом сечении (треугольнике) пирамиды (n ≥ 0), параллельном основанию, располагаются триномиальные коэффициенты (которые обозначаются ) подобно биномиальным коэффициентам в треугольнике Паскаля.

Рассмотрим сечения пирамиды для , и (рис. 2.6):

рис. 2.6

Видим, что коэффициенты, лежащие внутри сечения пирамиды в углу, равны сумме двух коэффициентов располагающихся на внешней стороне сечения, которые лежат на одной прямой с этим коэффициентом. Правило для нахождения триномиальных коэффициентов, стоящих внутри сечения пирамиды, вызвало большие трудности, поэтому правило вывода триномиальных коэффициентов было взято из литературы.

Известно, что любой внутренний элемент пирамиды Паскаля, стоящий в n -ом сечении, равен сумме трех элементов, расположенных в углах элементарного треугольника - го сечения пирамиды. Построение n-го сечения связывают с равенством :

;

Сечение получается из треугольника Паскаля, основанием которого служит -я строка треугольника, умножением элементов его строк почленно на элементы основания, повернутого против часовой стрелки на угол . Рис. 2.7, а иллюстрирует построение сечения при n=4. Расположение элементов сечения показано на рис. 2.7, .

Страницы: 2 3 4 5 6 7 8 9

Информация по теме:

Этиология, симптоматика и механизмы дизартрии
Дизартрия - нарушение произносительной стороны речи, обусловленное органической недостаточностью иннервации речевого аппарата. [54; 73с.] В последнее время в процессе логопедической практики все чаще встречаются дети, нарушения речи которых схожи с проявлениями сложных форм дислалии, но с более дли ...

Формирование и развитие предметно-исторических умений в процессе работы учащихся с историческими источниками
Чтобы формировать у школьников в процессе обучения истории специальные умения, учитель должен овладеть методикой их формирования, знать, какие умения обязательны для учащихся на протяжении всех лет обучения истории в школе, руководить их поэтапным формированием, т. е. ясно представлять, какие умени ...

Речевая ситуация. Типы речевых ситуаций
Важным компонентом содержания обучения русскому языку как иностранному (РКИ) является речевое умение, под которым понимают способность выражать и понимать высказывание, основываясь на знаниях и владении навыками использования языковых средств в речи. В процессе изучения иностранного языка особые тр ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru