Бином Ньютона можно обобщить по количеству слагаемых, т.е. найти разложение для , однако вывод данной формул является довольно сложным для школьника. Поэтому рассмотрим частный случай формулы, формулу для суммы трех переменных, т.е. для тринома. Выведем разложение для тринома , а также арифметическую таблицу триномиальных коэффициентов.
Рассмотрим ряд формул, являющихся частными случаями для , которые можно получить раскрыв скобки и приведя подобные слагаемые:
рис. 2.5
Построим арифметическую таблицу из триномиальных коэффициентов, данная таблица будет представлять собой пирамиду, которую называют пирамидой Паскаля (рис. 2.5). Видим, что по трем внешним ребрам пирамиды стоят единицы. Каждая из трех боковых граней представляет собой треугольник Паскаля. В n-ом сечении (треугольнике) пирамиды (n ≥ 0), параллельном основанию, располагаются триномиальные коэффициенты (которые обозначаются ) подобно биномиальным коэффициентам в треугольнике Паскаля.
Рассмотрим сечения пирамиды для , и (рис. 2.6):
рис. 2.6
Видим, что коэффициенты, лежащие внутри сечения пирамиды в углу, равны сумме двух коэффициентов располагающихся на внешней стороне сечения, которые лежат на одной прямой с этим коэффициентом. Правило для нахождения триномиальных коэффициентов, стоящих внутри сечения пирамиды, вызвало большие трудности, поэтому правило вывода триномиальных коэффициентов было взято из литературы.
Известно, что любой внутренний элемент пирамиды Паскаля, стоящий в n -ом сечении, равен сумме трех элементов, расположенных в углах элементарного треугольника - го сечения пирамиды. Построение n-го сечения связывают с равенством :
;
Сечение получается из треугольника Паскаля, основанием которого служит -я строка треугольника, умножением элементов его строк почленно на элементы основания, повернутого против часовой стрелки на угол . Рис. 2.7, а иллюстрирует построение сечения при n=4. Расположение элементов сечения показано на рис. 2.7, .
Информация по теме:
Использование аутентичных видеоматериалов для
формирования лингвострановедческой компетенции учащихся
Обучение культуре иноязычного общения занимает центральное место в современной педагогике. По определению М.Н. Вятютнева, иноязычная культура – все то материальное и духовное, что создано и продолжает создаваться обществом. Особая роль в обучении учеников в культуроведческом контексте принадлежит у ...
Взаимосвязь музыки и литературы на праздниках и развлечениях
Утренники и развлечения являются особой формой организации детской художественной деятельности в коррекционных школах VIII вида. Она соединяет различные виды искусства в целях наиболее эмоционального воздействия и эффективного решения ряда воспитательных задач. Знаменательные даты в школе отмечаютс ...
Метод экстремума потенциальной энергии
Применяя этот метод можно решать задачи статики, гидростатики, динамики вращательного движения, молекулярной физики и электростатики. Для решения задач на нахождение условия равновесия системы неободимо найти выражение для потенциальной энергии, продифференцировать его и, приравняв к нулю, решить о ...