Решение задачи в соответствии с выставленными принципами, понимание которых учащимся к этому моменту должно быть.подготовлено, не должно уже вызывать затруднений В одной из заданных плоскостей (рис.5), например в плоскости φ(φ1), берутся две произвольные вспомогательные прямые а(а) и в(в) и строятся точки — точки Х(Х1) и Y(Y1) — пересечения этих прямых с плоскостью β(β1). Прямая XY(X1Y1)— искомая.
Рис. 5
В повседневной практике в качестве вспомогательных прямых выбирают те, которые имеются уже на чертеже: следы плоскостей, прямые, определяемые точками, задающими плоскость. Одна точка линии пересечения плоскостей, заданных на рис. 6, определяется как точка пересечения следов плоскостей — точка Х(Х1). В качестве второй вспомогательной прямой а(а,) взята прямая, лежащая в проектирующей плоскости РP1 ТT1.
Рис. 6
Для закрепления решения этой задачи можно предложить следующую систему задач:
Плоскость задана тремя точками, расположенными на смежных боковых ребрах пирамиды (призмы). Найти линию пересечения этой плоскости с плоскостью нижнего основания.
Плоскость задана тремя точками, расположенными на не смежных боковых ребрах пирамиды, в основании которой лежит четырехугольник. Найти линию пересечения этой плоскости с плоскостью нижнего основания.
Плоскость задана тремя точками, две из них расположены на смежных боковых ребрах пирамиды, а третья – на боковой грани пирамиды. Найти линию пересечения этой плоскости с плоскостью нижнего основания.
Дана четырехугольная пирамида SABCD. Построить линию пересечения двух ее граней ASB и CSD
Дана четырехугольная призма ABCDABCD. Найти линию пересечения плоскости, заданной точками В,К,L, где В-вершина основания, точка K принадлежит ребру DD1,точка L принадлежит ребру CC1,с плоскостью A1B1C1D1.
Точки О и О1 являются точками пересечения диагоналей оснований куба. Найти линии пересечения плоскости, заданной точками О, О1,С с боковыми гранями.
Дано SABCD - пирамида. Точка Н- середина DC. Найти линию пересечения плоскости, заданной точками A,H,S,с плоскостью SBC.
Но для полноценного решения задач на построении полезно на основании двух опорных задач (нахождении точки пересечения с плоскостью и линии пересечения плоскостей) рассмотреть задачи.
Задача 1. Найти точку пересечения плоскости Q, заданной следом ВС и точкой А(А1), с проектирующей прямой DD1 (рис. 7а).
Рис 7а
Информация по теме:
Влияние занятий спортом на физическое развитие учащихся
Занятия физическими упражнениями в молодом возрасте предъявляют большие требования к физическому развитию. Поэтому при организации таких занятий необходимо особенно тщательно проводить наблюдения за влиянием различных тренировочных средств и методов на изменение физического развития занимающихся. И ...
Виды дидактических поисковых моделей обучения
С позиции теории деятельности диалогическое общение является важнейшей составляющей современного обучения. Диалог задает контекст совместной учебной деятельности, в котором происходит развитие субъекта этой деятельности, учащегося. Применительно к школе, ключевым для понимания роли диалогического о ...
Способы художественного изображения и передачи чувств
Уроки литературного чтения способствуют выполнению главной цели современной школы – формированию образованной культурной личности. Чтение книг для ребенка, познающего мир, всегда увлекательно. Но от уровня его читательской грамотности зависит глубина проникновения в смысл художественного произведен ...