Решение задачи в соответствии с выставленными принципами, понимание которых учащимся к этому моменту должно быть.подготовлено, не должно уже вызывать затруднений В одной из заданных плоскостей (рис.5), например в плоскости φ(φ1), берутся две произвольные вспомогательные прямые а(а) и в(в) и строятся точки — точки Х(Х1) и Y(Y1) — пересечения этих прямых с плоскостью β(β1). Прямая XY(X1Y1)— искомая.
Рис. 5
В повседневной практике в качестве вспомогательных прямых выбирают те, которые имеются уже на чертеже: следы плоскостей, прямые, определяемые точками, задающими плоскость. Одна точка линии пересечения плоскостей, заданных на рис. 6, определяется как точка пересечения следов плоскостей — точка Х(Х1). В качестве второй вспомогательной прямой а(а,) взята прямая, лежащая в проектирующей плоскости РP1 ТT1.
Рис. 6
Для закрепления решения этой задачи можно предложить следующую систему задач:
Плоскость задана тремя точками, расположенными на смежных боковых ребрах пирамиды (призмы). Найти линию пересечения этой плоскости с плоскостью нижнего основания.
Плоскость задана тремя точками, расположенными на не смежных боковых ребрах пирамиды, в основании которой лежит четырехугольник. Найти линию пересечения этой плоскости с плоскостью нижнего основания.
Плоскость задана тремя точками, две из них расположены на смежных боковых ребрах пирамиды, а третья – на боковой грани пирамиды. Найти линию пересечения этой плоскости с плоскостью нижнего основания.
Дана четырехугольная пирамида SABCD. Построить линию пересечения двух ее граней ASB и CSD
Дана четырехугольная призма ABCDABCD. Найти линию пересечения плоскости, заданной точками В,К,L, где В-вершина основания, точка K принадлежит ребру DD1,точка L принадлежит ребру CC1,с плоскостью A1B1C1D1.
Точки О и О1 являются точками пересечения диагоналей оснований куба. Найти линии пересечения плоскости, заданной точками О, О1,С с боковыми гранями.
Дано SABCD - пирамида. Точка Н- середина DC. Найти линию пересечения плоскости, заданной точками A,H,S,с плоскостью SBC.
Но для полноценного решения задач на построении полезно на основании двух опорных задач (нахождении точки пересечения с плоскостью и линии пересечения плоскостей) рассмотреть задачи.
Задача 1. Найти точку пересечения плоскости Q, заданной следом ВС и точкой А(А1), с проектирующей прямой DD1 (рис. 7а).
![]() |
Рис 7а
Информация по теме:
Педагогическое проектирование системы личностно ориентированных дидактических
игр
Применение технологий обучения обеспечивает логическую последовательность постановки и решения педагогических задач на основе выбора содержания, форм, методов и средств обучения, адекватного целям подготовки будущего учителя технологии и предпринимательства. Неслучайно поэтому, внедрение педагогиче ...
Воспитание идея казахских пословиц
В этих же целях широко были использованы жанры устного народного творчества как лирические, исторические песни, сказки, предания, пословицы и поговорки, загадки и скороговорки, ораторские слова и слова благословения и др. Этому свидетельствуют такие пословицы как «Хороший ребенок – опора, плохой ре ...
Критерии и уровни развития памяти младших школьников
В 20-х годах нашего века некоторые психологи высказали мысль о том, что память ребенка сильнее, лучше, чем память взрослого. Основанием для таких суждений были факты, говорившие об удивительной пластичности детской памяти. Однако внимательное изучение деятельности памяти маленьких детей показало, п ...