Результат получен после поворота и второго конца на угол . Искомая работа равна половине работы по перемещению доски на L
.
Задача: В полусферический колокол, плотно лежащий на столе, наливает через отверстие вверху воду. Когда вода доходит до отверстия, она приподнимает колокол и начинает вытекать снизу. Радиус колокола R, плотность воды . Найти массу колокола М. (рис.37)
1-й способ. Прямое динамическое решение задачи (рис.41, а) F=Mg+. F=
, M=
2-й способ. Поместим систему в цилиндрический сосуд высотой и радиусом R. (рис.37, б)
Пусть колокол тонок и его масса мала. Давление на колокол снаружи и изнутри равно во всех точках. Если колокол убрать, то
M= ()
, M= (
)
=
рис.37
Задача: Найти кинетическую энергию стержня, вращающегося в горизонтальной плоскости вокруг вертикальной оси, проходящей через его середину. Известны: (рис.38, а)
Для половины стержня (рис.38, б) . Но К=2
, следовательно К=
.
рис.38
Для того чтобы в полной мере овладеть использованием вышеизложенного метода необходимо решить не одну задачу с применением данного метода.
Метод дифференцирования и интегрирования
В основе метода лежат два принципа:
1) принцип возможности представления закона в дифференциальной форме;
2) принцип суперпозиции.
При использовании метода дифференцирования и интегрирования, разделяют тело на материальные точки или траекторию и время на такие промежутки, на которых процесс можно считать равномерным. Далее по принципу суперпозиций производят суммирование (интегрирование).
Задача: Найти силу гравитационного взаимодействия между расположенными на одной прямой материальной точкой массой m и однородным стержнем длиной L и массой M. Расстояние от точки до ближайшего конца стержня равно С. (рис.39)
рис.39
Выделяем на расстоянии х от точки элемент стержня длиной dx и массой dx. Сила его взаимодействия с точкой dF=
.
Поэтому F=.
Задача:
Найти кинетическую энергию однородного диска радиусом R и массы M, вращающегося с постоянной угловой скоростью вокруг оси, проходящей через центр диска перпендикулярно его плоскости.
Разобьем диск на кольца шириной dx, каждое из которых отстоит от оси вращения на x [0: R]. Масса каждого кольца, вращающегося с линейной скоростью
: dm=
Величиной (dx) 2 в сравнении с 2xdx можно пренебречь.
dk=
Откуда К=
Метод дифференцирования и интегрирования применяется также для вывода формул.
Вариационные принципы механики, метод виртуальных перемещений
Невариационные принципы устанавливают закономерности движения, совершаемого системой под действием приложенных сил.
Вариационные принципы разделяются на дифференциальные и интегральные. Дифференциальный - это метод виртуальных перемещений, интегральный - следствие из принципа наименьшего действия.
Принцип: Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ, действующих на систему сил при любом виртуальном перемещении, равнялась нулю.
Информация по теме:
Характеристика методов воспитания
Методы воспитания – это способы профессионального взаимодействия педагога и учащихся с целью решения учебно-воспитательных задач. Методы представляют собой механизм, обеспечивающий взаимодействие и взаимоотношение воспитателя и воспитанников. Метод воспитания частей является совокупностью составляю ...
Проблема определения тотальных размеров тела у детей и подростков
Как правило, в педагогической практике физическое развитие ребёнка оценивается, главным образом, по изменениям с возрастом тотальных размеров тела (рост, вес и окружность грудной клетки). Исследования в этой области позволили установить, что наиболее интенсивный прирост в морфологическом развитии р ...
Параметры психологического измерения субъективного отношения
к природе
Каждое субъективное отношение личности может быть охарактеризовано с помощью целого ряда параметров. Соответственно запечатленность потребностей личности в объектах или явлениях природы характеризуется тремя параметрами: структурно-содержательным – широтой: в каких именно объектах и явлениях природ ...