Результат получен после поворота и второго конца на угол . Искомая работа равна половине работы по перемещению доски на L
.
Задача: В полусферический колокол, плотно лежащий на столе, наливает через отверстие вверху воду. Когда вода доходит до отверстия, она приподнимает колокол и начинает вытекать снизу. Радиус колокола R, плотность воды . Найти массу колокола М. (рис.37)
1-й способ. Прямое динамическое решение задачи (рис.41, а) F=Mg+. F=
, M=
2-й способ. Поместим систему в цилиндрический сосуд высотой и радиусом R. (рис.37, б)
Пусть колокол тонок и его масса мала. Давление на колокол снаружи и изнутри равно во всех точках. Если колокол убрать, то
M= ()
, M= (
)
=
рис.37
Задача: Найти кинетическую энергию стержня, вращающегося в горизонтальной плоскости вокруг вертикальной оси, проходящей через его середину. Известны: (рис.38, а)
Для половины стержня (рис.38, б) . Но К=2
, следовательно К=
.
рис.38
Для того чтобы в полной мере овладеть использованием вышеизложенного метода необходимо решить не одну задачу с применением данного метода.
Метод дифференцирования и интегрирования
В основе метода лежат два принципа:
1) принцип возможности представления закона в дифференциальной форме;
2) принцип суперпозиции.
При использовании метода дифференцирования и интегрирования, разделяют тело на материальные точки или траекторию и время на такие промежутки, на которых процесс можно считать равномерным. Далее по принципу суперпозиций производят суммирование (интегрирование).
Задача: Найти силу гравитационного взаимодействия между расположенными на одной прямой материальной точкой массой m и однородным стержнем длиной L и массой M. Расстояние от точки до ближайшего конца стержня равно С. (рис.39)
рис.39
Выделяем на расстоянии х от точки элемент стержня длиной dx и массой dx. Сила его взаимодействия с точкой dF=
.
Поэтому F=.
Задача:
Найти кинетическую энергию однородного диска радиусом R и массы M, вращающегося с постоянной угловой скоростью вокруг оси, проходящей через центр диска перпендикулярно его плоскости.
Разобьем диск на кольца шириной dx, каждое из которых отстоит от оси вращения на x [0: R]. Масса каждого кольца, вращающегося с линейной скоростью
: dm=
Величиной (dx) 2 в сравнении с 2xdx можно пренебречь.
dk=
Откуда К=
Метод дифференцирования и интегрирования применяется также для вывода формул.
Вариационные принципы механики, метод виртуальных перемещений
Невариационные принципы устанавливают закономерности движения, совершаемого системой под действием приложенных сил.
Вариационные принципы разделяются на дифференциальные и интегральные. Дифференциальный - это метод виртуальных перемещений, интегральный - следствие из принципа наименьшего действия.
Принцип: Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ, действующих на систему сил при любом виртуальном перемещении, равнялась нулю.
Информация по теме:
Методы, приемы и формы работы с художественным текстом на уроках чтения
Методика чтения художественного произведения в младших классах имеет сложную историю развития, её спорные вопросы решаются вплоть до настоящего времени. Анализируя состояние методики чтения художественных произведений в школе начало 20в., С.П. Редозубов писал: ''следует заметить, что ''бережное отн ...
Образовательный стандарт начального общего образования по математике
Изучение математики в начальной школе направлено на достижение следующих целей: – развитие образного и логического мышления, воображения, математической речи, формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач и продолжения образования; – освоен ...
Система подготовки детей к обучению в школе по программе «Хочу
всё знать»
Опытно-экспериментальная работа проводилась на базе ДОУ №24 г. Вольска (воспитатели: В.Ф. Николаева и М.Н. Макарова) с 1 октября 2006 года в подготовительной к школе группе. В группе 19 человек (14 девочек и 5 мальчиков). Опишем систему подготовки детей к школьному обучению в детском саду на базе Д ...